dynex_scikit_plugin package
Submodules
dynex_scikit_plugin.dynex_scikit module
dynex_scikit_plugin.transformers module
dynex_scikit_plugin.utilities module
- dynex_scikit_plugin.utilities.corrcoef(x: Union[numpy.typing._array_like._SupportsArray[numpy.dtype], numpy.typing._nested_sequence._NestedSequence[numpy.typing._array_like._SupportsArray[numpy.dtype]], bool, int, float, complex, str, bytes, numpy.typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]], *, out: Optional[numpy.ndarray] = None, rowvar: bool = True, copy: bool = True) numpy.ndarray [source]
A drop-in replacement for
numpy.corrcoef()
.This method is modified to avoid unnecessary memory usage when working with
numpy.memmap
arrays. It does not support the full range of arguments accepted bynumpy.corrcoef()
.Additionally, in the case that a row of
x
is fixed, this method will return a correlation value of 0 rather thannumpy.nan
.- Parameters
x – See
numpy.corrcoef()
.out – Output argument. This must be the exact kind that would be returned if it was not used.
rowvar – See
numpy.corrcoef()
.copy – If
True
,x
is not modified by this function.
- Returns
See
numpy.corrcoef()
.
- dynex_scikit_plugin.utilities.cov(m: Union[numpy.typing._array_like._SupportsArray[numpy.dtype], numpy.typing._nested_sequence._NestedSequence[numpy.typing._array_like._SupportsArray[numpy.dtype]], bool, int, float, complex, str, bytes, numpy.typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]], *, out: Optional[numpy.ndarray] = None, rowvar: bool = True, copy: bool = True) numpy.ndarray [source]
A drop-in replacement for
numpy.cov()
.This method is modified to avoid unnecessary memory usage when working with
numpy.memmap
arrays. It does not support the full range of arguments accepted bynumpy.cov()
.- Parameters
m – See
numpy.cov()
.out – Output argument. This must be the exact kind that would be returned if it was not used.
rowvar – See
numpy.cov()
.copy – If
True
,x
is not modified by this function.
- Returns
See
numpy.cov()
.
- dynex_scikit_plugin.utilities.dot_2d(a: Union[numpy.typing._array_like._SupportsArray[numpy.dtype], numpy.typing._nested_sequence._NestedSequence[numpy.typing._array_like._SupportsArray[numpy.dtype]], bool, int, float, complex, str, bytes, numpy.typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]], b: Union[numpy.typing._array_like._SupportsArray[numpy.dtype], numpy.typing._nested_sequence._NestedSequence[numpy.typing._array_like._SupportsArray[numpy.dtype]], bool, int, float, complex, str, bytes, numpy.typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]], *, out: Optional[numpy.ndarray] = None, chunksize: int = 1000000000) numpy.ndarray [source]
A drop-in replacment for
numpy.dot()
for 2d arrays.This method is modified to avoid unnecessary memory usage when working with
numpy.memmap
arrays.- Parameters
a – See
numpy.dot()
.a.ndim
must be 2.b – See
numpy.dot()
.b.ndim
must be 2.out – See
numpy.dot()
.chunksize – The number of bytes that should be created by each step of the multiplication. This is used to keep the total memory usage low when multiplying
numpy.memmap
arrays.
- Returns
See
numpy.dot()
.