Home
Dynex Packages
Getting started
Guides
Using the Dynex SDK
Pricing
Sampler Properties and Parameters
Problem-Solving Handbook
Neuromorphic Machine Learning
Dynex TensorFlow Library
Dynex PyTorch Library
Dynex Qiskit class
Dynex Quantum-CFD Library
Dynex Quantum-SISR Library
Dynex Scikit-Learn Plugin
Dynex SDK
»
Index
Index
A
|
B
|
C
|
D
|
E
|
F
|
G
|
H
|
I
|
K
|
L
|
M
|
N
|
O
|
P
|
Q
|
R
|
S
|
T
|
U
|
V
|
W
A
account_status() (in module dynex)
AllStumpsClassifier (class in dynex_qboost.qboost)
B
biases_hidden (HybridQRBM.optimizers.Parameters attribute)
biases_visible (HybridQRBM.optimizers.Parameters attribute)
binary() (in module HybridQRBM.utils)
binary_three_bits() (in module HybridQRBM.utils)
BQM (class in dynex)
C
calculate_update() (HybridQRBM.optimizers.RBMOptimizer method)
Callbacks (class in HybridQRBM.rbm)
compute_and_log_metric() (MAQRBM.marbm.MARBM method)
compute_free_energy() (MAQRBM.marbm.MARBM method)
compute_kl_divergence() (MAQRBM.marbm.MARBM method)
compute_mae() (MAQRBM.marbm.MARBM method)
compute_mse() (MAQRBM.marbm.MARBM method)
compute_ssim() (MAQRBM.marbm.MARBM method)
contrastive_divergence() (MAQRBM.marbm.MARBM method)
ContrastiveDivergenceSampler (class in HybridQRBM.samplers)
corrcoef() (in module dynex_scikit_plugin.utilities)
cov() (in module dynex_scikit_plugin.utilities)
CQM (class in dynex)
CXRDataset_pca (class in HybridQRBM.utils)
D
DecisionStumpClassifier (class in dynex_qboost.qboost)
delta() (DynexQSVM.QSVM_Layer.QSVM_Layer method)
dnx (class in HybridQRBM.pytorchdnx)
dnx_experimental (class in HybridQRBM.pytorchdnx)
dot_2d() (in module dynex_scikit_plugin.utilities)
DWaveInferenceSampler (class in HybridQRBM.samplers)
DWaveSampler (class in HybridQRBM.samplers)
dynex
module
dynex_qboost
module
dynex_qboost.qboost
module
DYNEX_QRBM (class in DynexQRBM.QRBM)
dynex_scikit_plugin
module
dynex_scikit_plugin.utilities
module
DynexQRBM
module
DynexQRBM.QRBM
module
DynexQSVM
module
DynexQSVM.QSVM_Layer
module
DynexSampler (class in dynex)
(class in HybridQRBM.samplers)
E
encode() (in module HybridQRBM.utils)
energy() (HybridQRBM.rbm.RBM method)
EnsembleClassifier (class in dynex_qboost.qboost)
estimate_costs() (in module dynex)
extract_data_only_from_batch() (MAQRBM.marbm.MARBM method)
extract_features() (MAQRBM.marbm.MARBM method)
F
fit() (HybridQRBM.rbm.RBM method)
fit_offset() (dynex_qboost.qboost.EnsembleClassifier method)
fit_range() (HybridQRBM.rbm.RBM method)
forward() (DynexQSVM.QSVM_Layer.QSVM_Layer method)
(HybridQRBM.pytorchdnx.dnx method)
(HybridQRBM.pytorchdnx.dnx_experimental method)
(MAQRBM.marbm.MARBM method)
G
generate() (DynexQRBM.QRBM.DYNEX_QRBM method)
(HybridQRBM.samplers.Sampler method)
generate_visible_layer() (DynexQRBM.QRBM.DYNEX_QRBM method)
get_auc_calculator() (in module HybridQRBM.callbacks)
get_selected_features() (dynex_qboost.qboost.EnsembleClassifier method)
get_visualization_data() (MAQRBM.marbm.MARBM method)
get_weights() (DynexQRBM.QRBM.DYNEX_QRBM method)
gibbs_updates() (HybridQRBM.samplers.Sampler method)
H
hidden (HybridQRBM.callbacks.Sample attribute)
hidden_prob (HybridQRBM.callbacks.Sample attribute)
HybridQRBM
module
HybridQRBM.callbacks
module
HybridQRBM.optimizers
module
HybridQRBM.pytorchdnx
module
HybridQRBM.rbm
module
HybridQRBM.samplers
module
HybridQRBM.utils
module
I
infer() (DynexQRBM.QRBM.DYNEX_QRBM method)
(HybridQRBM.samplers.Sampler method)
K
kernel() (DynexQSVM.QSVM_Layer.QSVM_Layer method)
kl_divergence() (MAQRBM.marbm.MARBM method)
L
l2_regularizer() (in module HybridQRBM.utils)
load() (DynexQRBM.QRBM.DYNEX_QRBM method)
load_data() (in module HybridQRBM.utils)
load_model() (DynexQSVM.QSVM_Layer.QSVM_Layer method)
(MAQRBM.marbm.MARBM method)
lock_weights() (MAQRBM.marbm.MARBM method)
M
MAQRBM
module
MAQRBM.marbm
module
MARBM (class in MAQRBM.marbm)
module
dynex
dynex_qboost
dynex_qboost.qboost
dynex_scikit_plugin
dynex_scikit_plugin.utilities
DynexQRBM
DynexQRBM.QRBM
DynexQSVM
DynexQSVM.QSVM_Layer
HybridQRBM
HybridQRBM.callbacks
HybridQRBM.optimizers
HybridQRBM.pytorchdnx
HybridQRBM.rbm
HybridQRBM.samplers
HybridQRBM.utils
MAQRBM
MAQRBM.marbm
N
NaiveSampler (class in HybridQRBM.samplers)
O
on_batch_end (HybridQRBM.rbm.Callbacks attribute)
on_batch_start (HybridQRBM.rbm.Callbacks attribute)
on_epoch_end (HybridQRBM.rbm.Callbacks attribute)
on_epoch_start (HybridQRBM.rbm.Callbacks attribute)
on_fit_end (HybridQRBM.rbm.Callbacks attribute)
on_fit_start (HybridQRBM.rbm.Callbacks attribute)
P
Parameters (class in HybridQRBM.optimizers)
PersistentContrastiveDivergenceSampler (class in HybridQRBM.samplers)
predict() (dynex_qboost.qboost.DecisionStumpClassifier method)
(dynex_qboost.qboost.EnsembleClassifier method)
(DynexQRBM.QRBM.DYNEX_QRBM method)
(HybridQRBM.rbm.RBM method)
(HybridQRBM.samplers.DWaveInferenceSampler method)
(HybridQRBM.samplers.Sampler method)
predict_class() (dynex_qboost.qboost.EnsembleClassifier method)
preprocess_to_binary() (MAQRBM.marbm.MARBM method)
produce_logger() (in module HybridQRBM.callbacks)
Q
qboost_lambda_sweep() (in module dynex_qboost.qboost)
QBoostClassifier (class in dynex_qboost.qboost)
QSVM_Layer (class in DynexQSVM.QSVM_Layer)
R
RBM (class in HybridQRBM.rbm)
rbm2qubo() (MAQRBM.marbm.MARBM method)
RBMOptimizer (class in HybridQRBM.optimizers)
reconstruct() (MAQRBM.marbm.MARBM method)
report_baseline() (dynex_qboost.qboost.QBoostClassifier method)
S
Sample (class in HybridQRBM.callbacks)
sample() (dynex.DynexSampler method)
(HybridQRBM.samplers.ContrastiveDivergenceSampler method)
(HybridQRBM.samplers.DWaveSampler method)
(HybridQRBM.samplers.DynexSampler method)
(HybridQRBM.samplers.NaiveSampler method)
(HybridQRBM.samplers.PersistentContrastiveDivergenceSampler method)
(HybridQRBM.samplers.Sampler method)
(in module dynex)
sample_hidden() (MAQRBM.marbm.MARBM method)
sample_ising() (in module dynex)
sample_opposite_layer_pyqubo() (DynexQRBM.QRBM.DYNEX_QRBM method)
(HybridQRBM.pytorchdnx.dnx_experimental method)
sample_opposite_layer_pyqubo_batch() (DynexQRBM.QRBM.DYNEX_QRBM method)
sample_qubo() (in module dynex)
sample_visible() (MAQRBM.marbm.MARBM method)
Sampler (class in HybridQRBM.samplers)
SAT (class in dynex)
save() (DynexQRBM.QRBM.DYNEX_QRBM method)
save_model() (DynexQSVM.QSVM_Layer.QSVM_Layer method)
(MAQRBM.marbm.MARBM method)
save_particles() (in module HybridQRBM.callbacks)
score() (dynex_qboost.qboost.EnsembleClassifier method)
set_sampler_parameters() (MAQRBM.marbm.MARBM method)
set_weights() (DynexQRBM.QRBM.DYNEX_QRBM method)
sigmoid() (in module DynexQRBM.QRBM)
squared_error() (dynex_qboost.qboost.EnsembleClassifier method)
T
test() (in module dynex)
to_qubo_matrix() (HybridQRBM.pytorchdnx.dnx method)
(HybridQRBM.rbm.RBM method)
train() (DynexQRBM.QRBM.DYNEX_QRBM method)
(DynexQSVM.QSVM_Layer.QSVM_Layer method)
(MAQRBM.marbm.MARBM method)
training (DynexQSVM.QSVM_Layer.QSVM_Layer attribute)
(HybridQRBM.pytorchdnx.dnx attribute)
(HybridQRBM.pytorchdnx.dnx_experimental attribute)
(MAQRBM.marbm.MARBM attribute)
U
unlock_weights() (MAQRBM.marbm.MARBM method)
V
visible (HybridQRBM.callbacks.Sample attribute)
visible_prob (HybridQRBM.callbacks.Sample attribute)
W
weights (HybridQRBM.optimizers.Parameters attribute)